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Abstract-A model was developed for simulating the manufacturing process of filament-wound
cylinders made of a thermoset matrix composite. The model relates the process variables (winding
speed, fiber tension, applied temperature) to the parameters characterizing the composite cylinder
and the mandrel. The model is applicable to cylinders for which the diameter is large compared to
the wal1 thickness. The model was implemented by a user-friendly computer code suitable for
generating numerical results. The model and the corresponding code provide the fol1owing infor­
mation as a function of time and position inside the composite cylinder and the mandrel during the
Winding and the subsequent oven curing: (i) temperature throughout the cylinder and mandrel, (ii)
degree of cure throughout the cylinder, (iii) viscosity throughout the cylinder, (iv) fiber positions,
(v) fiber tensions, (vi) stresses and strains throughout the cylinder and mandrel, and (vii) porosity
throughout the cylinder.

1. INTRODUCfION

The manufacture of a part by filament winding consists of three major steps. The first step
is the design of the part itself. The second step is the placement of the fibers in their
appropriate positions. The third step is the selection and control ofthe processing conditions
used during the manufacturing process. This investigation is addressed to the last point,
namely to the selection of the processing conditions.

The conditions existing during the manufacturing process are governed by the following
process variables: the winding speed, winding tension, and either the applied temperature
or the applied heating. The appropriate values of these process variables must be employed
to ensure that the filament-wound part has the required properties and dimensions.

The best way to establish the proper process variables is through a set of analytical
models. In this paper a model suitable for simulating the filament-winding process is
described. Verification of the model by tests, and the use of models in selecting the process
variables are presented in Calius et al. (1989) and Lee and Springer (l989), respectively.

2. PROBLEM STATEMENT

The cylinder is built up by depositing bands of resin-impregnated fiber bundles onto
a mandrel ofouter radius R and length L. The cylinder is a thin shell with uniform thickness
in the axial and circumferential directions. This thickness varies' with time during the
manufacturing process. The mandrel is represented by a thin hollow cylinder with a uniform
"effective" wall thickness. The thermal and mechanical effects associated with the ends of
the cylinder and the mandrel are neglected. Accordingly, both the cylinder and the mandrel
are treated as very long axisymmetrical bodies of equal length L, whose geometrical and
material properties do not vary along either the axial or the circumferential directions.
Hence the instantaneous temperature, viscosity, degree of cure, fiber position and tension,
and stresses and strains are assumed to vary only along the radial dimension.
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Fig. I. Description of the problem geometry.

CYLINDER

The winding mechanism maintains an initial tension Fo in the band and an initial
winding angle 4>0 as the bundles are delivered onto the mandrel (Fig. I). The fibers may be
impregnated during the course of the winding by feeding them through a resin bath before
they reach the mandrel (wet winding), or may be preimpregnated with resin prior to the
start of the winding. The fiber bundles are deposited by a cross-head moving back and forth
on a path parallel to the mandrel axis with a speed V, while the mandrel rotates at angular
velocity w.

During winding the inner surface of the mandrel and the outer surface of the cylinder
may be at room temperature, or at temperatures which are higher or lower than room
temperature. Higher temperatures may arise if the cylinder is heated during winding. Lower
temperatures may occur if the winding is interrupted and the cylinder is stored. Subsequent
to winding (or possibly even during winding) the composite is cured by applying heat to
the mandrel-cylinder assembly. The heat applied to the mandrel and cylinder surfaces (and
consequently the temperatures of these surfaces Tm and TO' Fig. I) may be different.

Our objective is to develop a model which relates the process variables: winding speed
(V and w), fiber tension (Fo), and surface temperatures (Tm and Tc) to the following
parameters:

(i) temperature throughout the cylinder and mandrel,
(ii) degree of cure throughout the cylinder,

(iii) viscosity throughout the cylinder,
(iv) fiber positions,
(v) fiber tensions,

(vi) stresses and strains throughout the cylinder and mandrel,
(vii) porosity throughout the cylinder, and

(viii) strength of the cylinder.

Following the scheme previously used for simulating the autoclave curing of laminates
(Springer, 1983; Loos and Springer, 1983), the filament winding model consists of five
submodels: thermochemical, fiber motion, stress-strain, void and strength. The thermo­
chemical, void and strength submodels are similar to those developed for autoclave cure,
and hence are discussed only briefly. The fiber motion and stress-strain submodels are
markedly different from those used for flat laminates, and are described in detail.

3. THERMOCHEMICAL SUBMODEL

The thermochemical submodel relates the applied surface temperatures Tm and Tc to
the temperature, degree of cure, and viscosity inside the composite. The starting point of
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Fig. 2. Geometry of the cylinder and the mandrel, and the temperature at the inner surface of the
mandrel Tm and at the outer surface of the cylinder T•.
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this submodel is the conservation of energy which, for the axisymmetric one-dimensional
problem being considered, can be written as (Eckert and Drake, 1972)

aT I a(OT) .pC-=-- rK.- +pH
at r or ar

(1)

where T is the temperature inside the composite and the mandrel, t is time, and r is the
radial coordinate (Fig.2). fl is the rate at which heat is generated or absorbed by chemical
reactions, p is the density, Ii: is the transverse thermal conductivity, and C is the specific
heat of the composite.

The degree of cure IX of the composite is defined as (Loos and Springer, 1983)

IX = H/Hr (2)

where H is the heat which has evolved from the start of the reaction (at time t = to) to the
present time, and Hr is the total heat of reaction. As for to, it is the time at which the
material element under consideration became part of the cylinder.

From eqn (2) we obtain an expression for fl

. (dOC)H= - Hdt r

where dxjdt is the rate of degree of cure. Substitution of eqn (3) into eqn (1) yields

aT 1 0(OT) dO(pC- = - - rK.- +pHr -.ot r or or d1

(3)

(4)

Equation (4) contains two unknowns, the temperature T and the degree of cure oc.
Therefore, an additional expression is needed which contains these two parameters, This
expression, which represents the chemical kinetics, can symbolically be written as

doc
dt =II (IX, 1). (5)

Expressions for/t for Hercules 3501-6 and Fiberite 976 epoxy resins are given in Lee
et al. (1982) and Dusi et al. (1987), respectively, and for Hercules HBRF-55 resin in Calius
et al. (1989) and Bhi et al. (1987).

The density p, the thermal conductivity K, and the heat capacity C may vary as the
cure reaction proceeds. Expressions relating these properties to the temperature and degree
of cure are given in Appendix A.
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Fig. 3. Illustration of a resin-impregnated tiber band.

As initial conditions, the initial temperature To and the initial degree of cure of the
material iXo must be specified at the time to at which the material is added to the cylinder.
Hence, the initial conditions can be expressed as

T=To ':1.=':1.0 att=to. (6)

To may be but does not have to be the same as the temperature Ta of the room where
the winding is taking place, while OCo is the degree of cure the resin has acquired while
waiting to be placed on the cylinder. Since the cylinder's thickness is built up gradually, to
is dfferent for each layer.

The boundary conditions require that the temperature on the inner surface of the
mandrel Tm and at the outer surface of the cylinder To be specified at all times. Thus, the
temperature boundary conditions are

T = Tc at r = R+h }
T

T t > O.= J: m at r = R-hm

(7)

R is the outer radius of the mandrel and h is the thickness of the cylinder (Fig. 2).
During winding the cylinder outer surface temperature Tc frequently approximates the
ambient room temperature Ta • During cure Tc is the temperature resulting from the applied
heating. In the latter case Tc is likely to be different from the ambient air temperature. Note
that h varies with time, while hm, which is the effective thermal thickness of the mandrel,
remains constant throughout the winding process.

Solutions to eqns (4)-(7) provide the temperature T and the degree of cure ':I. as
functions of position and time inside the cylinder.

Once the temperature T and the degree of cure a are known the resin viscosity can be
calculated from an expression of the form

f.l =12(a, 1). (8)

Expressions of this function for Hercules 3501-6 and Fiberite 976 epoxy resins are also
presented in Lee et al. (1982) and Dusi et al. (1987), respectively, and for Hercules HBRF­
55 epoxy resin in Calius et al. (1989) and Bhi et al. (1987).

4. FIBER MOTION SUBMODEL

The resin-impregnated fiber bundles (tows) are wound side-by-side, forming a band of
approximately rectangular cross-section with width b and thickness tlh (Fig. 3). This band
is wound into successive layers. Initially (at time t = to) the fiber tension in the band is Fo
and the fiber's winding angle is lfJo. During processing the fibers may move, precipitating a
change in the fiber tension and in the fiber angle. The instantaneous (at time t > to) fiber
tension and fiber angle are denoted by F and lfJ, respectively (Fig. 3).
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Fig. 4. Idealization of the fiber sheets in the fiber motion submodeI.
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To simplify the analysis we treat a large number of fibers as a unit. These fibers make
up what we call a fiber sheet (Fig. 4). A fiber sheet (of thickness L1~) includes all of the
fibers in a rectangular cross-section whose ' ...·idth is the same as that of the band. All of the
fibers in a fiber sheet are assumed to moved together.

The fibers may move in the axial, hoop and radial directions. However, only the radial
components of the fiber tension are not self-equilibrating since the tension is constant along
the fibers. Consequently, we are most concerned with the motion of the fibers through the
resin in the radial direction. This movement is described by the instantaneous radial position
rf of the fiber sheet's midsurface (Fig. 5). Changes in the radial position may arise for three
reasons:

(i) the curvature of the fibers gives rise to a radial component of the fiber tension inducing
fiber motion in the radial direction (Fig. 5b);

(ii) the dimensions of the mandrel may change during processing resulting in movement
of every layer in the composite (Fig. 5c);

(a) (b) (c) (d)

Fig. 5. Illustration of the changes in fiber position relative to cylinder's axis from its position at the
time of winding (a). due to the winding tension (b). due to deformation of the mandrel (c). and due

to changes in resin density (d).
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Fig. 6. Geometry of the AB fiber band segment.

(iii) the resin surrounding the fibers may expand or contract, causing radial motion of the
fibers (Fig. 5d).

Thus the instantaneous radial position rr of a fiber sheet's midsurface can be written
as

(9)

where R? is the radial position of the fiber sheet at tiine to, Wr is the radial displacement of
the fiber sheet relative to the surrounding resin, Wm is the radial displacement of the sheet
due to mandrel deformation, and wr is the radial displacement of the sheet due to resin density
changes caused by changes in the resin's temperature, degree of cure or moisture content.

The objective of this submodel is to develop an equation which can be solved forwr
at each instant of time. The effects of (ii) and (iii) which result in Wm and wr are dealt with
in the next section.

In developing this submodel it is assumed that all the fibers in a given layer start
moving at the same time. This assumption implies that in each layer the band appears
instantaneously in its place at the designated time to. This is a reasonable assumption for
the cylinders considered here because the time required to wind any given band into a
complete layer is negligible compared to the total time involved in winding the entire
cylinder.

To calculate the radial motion of the fiber sheet, we take the fiber path around the
cylinder to be sufficiently long so that edge effects, due to fibers being wrapped around the
end closures of the cylinder, are negligible. Then we only need to consider an arbitrarily
chosen portion of the sheet, as shown in Fig. 3. In what follows we shall concern ourselves
with a short segment AB of a fiber sheet.

Equilibrium
For the AB segment we choose a local Cartesian coordinate system ~, X, " attached to

the center of the segment (Fig. 6). eis perpendicular to the surface of the sheet, X is parallel
to the axis of the cylinder, and 11 is perpendicular to ~-X plane.

The total fiber tensions acting at each end of the segment are denoted by FA and F B

(Fig. 7). F." and Fo are the axial and circumferential components of this force. At each of
the endpoints Fo can be further decomposed into F; and F~, which are the force components
acting in the ~ and" directions.
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Fi( = F COlI 41

Fo =F sin 41

F( = Fo sin (ll'+~)

F. = Fo COlI ( ll' + ~)

Fig. 7. Forces acting on the AB fiber band segment.

There are also pressure forces acting on the inner and outer surfaces of the fiber sheet
due to the pressure in the resin (Fig. 7). The force balance in the ~ direction is

(10)

where p + and p - are the pressures on the outside and inside of this sheet. respectively. dd;
is an element of the projected fiber sheet are perpendicular to the eaxis over which the
pressure acts. From Fig. 6. given that b is a constant. this area is

dd, = bI dl1 = bIre cos 0 dO (11)

where bI is the projection along the Xaxis of the sheet's width b. and re is the radial position
of the sheet's midsurface. 0 is the circumferential angle between the origin of the coordinate
system and the edge of the element dd,. Since the fiber sheet is very thin, in writing eqn
(11) we have taken the radius of the upper and lower surfaces to be the same as that of the
midsurface. Thus the integral of the pressure over the surface area can be written as

(12)

where 0/2 is the circumferential angle between the origin of the coordinate system and the
segment's end points A and B.

By taking the pressure P and the radial position re of the midsurface to be constant
over this segment. eqn (12) can be integrated to yield
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f Pdd, = Ph rr [Sin (~.-) -sin (- ~ \.)] = 2P(-c~) rf sin ~. (13)
.:3, ' x 2 2 , SIO rjJ 2

The second equality was obtained by replacing bx with its projection h;'sin rjJ, where rjJ
is the instantaneous band angle (Fig. 6).

The ~ components of the fiber tension can be expressed in terms of the total fiber
tension F. By referring to the free body diagram in Fig. 7. we can write

Ff = (Fri) sin (n+ ~) = (P" sin <1>\) [ -sin (~) ]

F? = (F~) sin ( - ~) = (FB sin <1>B) [sin ( -~) ] (14)

where Fn is the circumferential component of the tension, and <1> is the angle between the
total tension and its axial component at the end of the segment. The superscripts A and B
refer to these end points.

It seems reasonable to assume that the shear forces between the fibers and the resin
are negligible in comparison with the fiber tension. Under this assumption the axial com­
ponents of the end forces are equal (F: = F:). For the short segment AB under consider­
ation, we have also taken the pressure distribution to be uniform and symmetric about the
Xaxis. A consequence of this assumption is that the normal components of the end forces
are also equal (Ft = Fn. The above-mentioned force equalities imply that Fri is equal to
Fg [see eqn (14)]. From Fig. 7 it can now be seen that if Fx'" = F: and Fri = Fg then at the
two ends of the segment the total forces FA and FB are equal, and the angles <D-" and <DB are
equal

FA = FB = F

<1>A = <1>B = rjJ. (15)

Since the total fiber tension Fhas the same magnitude and direction at both A and B,
the angle <1> between the force and the X axis is the same as the fiber band angle 4>. This
equality is indicated in the second of eqn (15). We may now write eqn (14) as

A B . ~ . e
F~ = F~ = - 2(F SIO '1') SIO 2 . (16)

By substituting eqns (13) and (16) into (10) we obtain the following form of the
equilibrium equation

(17)

Resinf/ow
The fiber sheet under consideration is actually not a solid, but a close-packed assem­

blage of fibers. Resin can flow relative to the fibers through the interstices between these
fibers. The radial forces pull the fibers through the resin in the radial direction with a
velocity wr. In practice wr is low and the resin's viscosity Jl is high so that the flow is laminar.
By modeling the fiber sheet as a porous medium. the fiber velocity can be related to the
pressure drop through Darcy's law (Daily and Harleman. 1966; Collins, 1961). which we
write as
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(18)

where p. is the resin viscosity, [I' is the sheet's permeability, and L\'; is the distance through
which the pressure drop takes place, which is the fiber sheet's thickness. We define L\'; as
the thickness of the band times the fiber volume fraction Vr

(19)

The permeability can be deduced from data or can be approximated by the Carman­
Kozeny formula (Happel, 1959). Equations (17) and (18) together yield a relation between
the radial fiber tension and fiber velocity. However, since the fiber tension itself is not
constant but changes with fiber position, additional relations are necessary to define the
problem.

Fiber tension
The force F can be expressed in terms of the fiber stress through the boundary traction

at each end of the segment AB

(20)

where G'r is the axial fiber stress, af is the average axial fiber sheet stress, and d r is the total
cross-sectional area of all the fibers at the end of the segment.

By assuming that the stress distribution is uniform and that the fibers behave in a
linearly elastic manner we may apply Hooke's law as follows

(21)

where Br is the total fiber strain and Sr is the thermal strain along the fiber axis. E~ I and E~2
are the fibers' longitudinal and transverse Young's moduli, and v~ 2 is its longitudinal Poisson
ratio. G'p is the fiber stress in the direction perpendicular to the fiber axis, arising from the
radial pressures p+ and p-. Henceforth we neglect this transverse stress because it is of
secondary interest in comparison with the longitudinal stress. Equation (21) can thus be
rewritten as

(22)

Initially (at winding time) the fiber tension is Fa and the corresponding average fiber
sheet stress along the fiber axis is Gro

(23)

By combining eqns (20) and (23), the instantaneous fiber tension F may be expressed
in terms of the change in stress from the time the band was wound (t = to) to the present
time t:

(24)

To write eqn (24) above, we assumed that the area of the fiber sheet's cross-section
remains essentially constant throughout the process. From Fig. 4, given that band L\'; are
constant over this segment, this cross-sectional area is



280 E. P. CAUt:S and G. S. $PRlSGER

sir = b~~ (25)

where ~~ corresponds to the thickness of the fiber sheet.
By using eqn (22) we can write

(26)

where eft) is the longitudinal fiber strain and IrQ is the longitudinal thermal strain at winding
time. For fibers whose thermal strain varies linearly with temperature we have

(27)

where fJ~ I is the fiber's longitudinal coefficient of thermal expansion, T is the instantaneous
fiber temperature and To is the fiber temperature at winding time. The temperature usually
varies with radial position, so the thermal strain may change as the fiber sheet moves even
if T does not change as time passes.

By combining eqn (17) with eqn (18) and eqns (24)-(27) we may express the radial
equilibrium equation in the following form

In order to complete our definition of this model we must express the fiber strains in
terms of the fiber sheet's position.

Strain-position relation
The change in the longitudinal fiber strain is defined as

(29)

where 10 is the original length of the fibers in the segment before the winding tension is
applied, and rr and If are the fiber lengths under tension at the winding time to and at time
t, respectively.

Since the strains caused by the winding tension are small, such that 10 :::::: I~, we may
write

Based on the geometry shown in Fig. 8, these lengths may be expressed as

lr::= J(AX+Au)2 + (rr0 )2

If ::= JAx 2 + (Rf0)2

(30)

(31)

where AX is the axial distance between the endpoints of the segment, and au is the difference
in axial displacements u of the two endpoints of the segment. e is the circumferential angle
between these endpoints.

For small displacements the axial component of the fibers' stretching or shrinkage may
be approximated by
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Fig. 8. Length of the fibers in the AD segment.

(32)

Geometric considerations provide the relationship between the axial and circumfer­
ential components of the length (AX and R?E» and the winding angle cPo (Fig. 8)

R?E>
AX = tan cPo.

By combining eqns (31)-(33), after algebraic manipulations, we obtain

If = rfE> (1 + (OU/OX»)2 1 +1
(rrf R?) tan2 cPo

Substitution of eqn (34) into eqn (30) yields

(l/tan2 t/>O)(1 + (OU/oO
X»)2 +1

rrfRr
---(-1/-ta-n--2-t/>-o-)+-1-- - 1.

(33)

(34)

(35)

Governing equation
Straightforward but space-consuming algebraic manipulations of eqns (9), (28) and

(35) result in (Calius and Springer, 1989)
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The parametersfo throughf] are

(36)

{
I (OU)2 }f2 = C 2 1+ ox cos 2 <Po sin 2 <Po

where C and ware defined as

(37)

(38)

Solutions to eqn (36) provide Wf' In order to perform the calculations, expressions are
needed for the band rotation ou/OX, the displacement w, and the temperature T. The
appropriate relationships for the first two are derived in the next chapter. The last one is,
of course, provided by the thermochemical model described in the previous chapter. All
other geometrical and material parameters are known.

Equation (36) may be simplified to (Appendix B)

(39)

where

r-6,t
fl . /-6/ wr . 1-6/

-J3wr - R? Wr

(40)

Equation (39) is a first-order linear ordinary differential equation whose coefficients
go through g3 can be treated as constants during a small time interval. The unique solution
to eqn (39) is (Boyce and DiPrima, 1977)
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Fig. 9. Illustration of the cylinder and mandrel assembly's stress components and the coordinate
system.

5. STRESS AND STRAIN SUBMODEL
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(41)

Introduction
The stress-strain submodel provides the stresses and strains inside the cylinder as

functions of position and time. This submodel was developed on the basis of the following
assumptions:

(a) the normal stresses in the radial direction (Jrr are negligible in comparison to the in­
plane normal stresses (Jxx and (Je8 (Fig. 9),

(b) inertia effects are negligible,
(c) the composite winding consists of a stack of thin cylindrical layers, with each layer

being composed of a single material wound at a constant fiber angle,
(d) the mandrel is either cylindrical or, for stress analysis purposes, can be idealized as an

"effective" cylinder, and
(e) the stress-strain laws are uniform through the mandrel and through each layer's

thickness.

Note that although the wind angle and material properties are taken to be the same
everywhere within a given layer, they may vary from layer to layer.

From (a), the stress and strain components to be considered in this analysis are

(J = {(Jxx,(J88, !x" !re, !ex},r

8 = {exx ,e88,Yx"Yre,Y8x},r (42)

where the :?i superscript has the conventional meaning of the transpose of the vector. (J
and 8 denote the normal stress and strain components, and! and y denote the engineering
shear stress and strain components. The subscripts x, rand 8 refer to directions defined by
a cylinder-centered coordinate system (Fig. 9).

In eqn (42), 8 is the total strain vector, which is the linear superposition of the
mechanical (stress-induced) i and thermochemical I strains

8=1+1 (43)

where I represents the strain due to thermochemical changes in the density of the material
and may include changes due to temperature and chemical reactions (shrinkage).
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The governing equations are derived from the mandrel-eylinder assembly's instan­
taneous energy balance through a variational procedure. The principle of minimum poten­
tial energy is chosen to provide the static equilibrium equations. This principle is expressed
as (Reddy, 1985)

(44)

where the operator on represents variation with respect to the model's unknowns, which
will be discussed later. U is the assembly's total strain energy functional, and W is the work
performed by the external applied and reaction forces acting on the cylinder and its mandrel.
In the present case, the assembly is assumed to be simply-supported. Furthermore, the work
performed by the winding mechanism is included in the layers' initial strain energy. Thus
there are no external forces, and we have

W=o. (45)

At time t the total strain energy is comprised of the mandrel's strain energy U:., and
the cylinder's strain energy U:. The latter can be further decomposed into three parts:

(i) the initial strain energy U 0 introduced into the cylinder by the winding tension Fo,
(ii) the strain energy U~ due to deformations of the cylinder which take place during the

processing up to time t, and
(iii) the fibers' strain energy U; due to the movement (up to time t) of the fibers within the

cylinder (see Section 4).

Consequently, eqn (44) may now be rewritten as

oo(Uo+ U~+ Uf+ U:.,) = o.

It is convenient to express the strain energies in terms of strain energy densities

(46)

(47)

where "f;and ~ are the volumes of the cylinder and the mandrel. Dr is the composite's fiber
volume fraction and is included here because 1/1; is the strain energy of the fibers only. 1/1 0,

I/I~, 1/1; and 1/1:., are the strain energy densities corresponding to Uo, U~, U; and U:.,. The
strain energy density is defined as

1/11 := f(11 d8' (48)

where (11 and 8' are the instantaneous stress and total strain vectors defined in eqn (42).
Since the cylinder is laminated, the strain energy's volume integral can conveniently

be split among the layers. Thus the first of eqn (47) becomes

(49)

where L is the cylinder's length, rk is the midsurface radius and hk the thickness of layer
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Fig. 10. Illustration of the composite layer's geometry.

number k out of a laminate total of N. The layers are numbered from the cylinder's inner
surface outwards and k varies from 1 to N (Fig. 10).

For a cylindrical mandrel, the second of eqn (47) can be written as

fL/2 i2l[ iR

U:" = t/J:"r dr dO dx
-L/2 ° R-hm

(50)

where R is the mandrel's outer surface radius and hm is its "effective" thickness.
It is convenient to consider the mandrel as part of the laminated cylinder. This is

accomplished by treating the mandrel as a sub-laminate consisting of one or more layers
within the total cylinder-mandrel assembly. Thus we write the mandrel's strain energy as

(51)

where the subscript k now refers to one of the M +1"layers" in the mandrel. These "layers"
are numbered from the mandrel's outer surface inwards and k varies from 0 to - M.
Although there is no fiber motion energy term, we do have an initial contribution (t/JO)k
from the forces applied to the mandrel as each layer of the composite is wound.

Since the deformations are assumed to be infinitesimal, the principal dimensions of the
cylinder and mandrel may be treated as constants. Then, using its commutative property
(Lanczos, 1986), the variational operator can be moved inside the U integral, giving the
following expression for equilibrium

The next step is to formulate each of the strain energy density terms in the above
equation.

Strain energy density
In order to proceed with the analysis, we must express each of the four strain energy

densities in terms of appropriate stresses and strains [eqn (48)].
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The initial strain energy density (ljJ I)k due to the winding tension is a constant. Hence,
the variation of (ljJl)h is zero, and we do not need to concern ourselves with this term any
further, except to note that it is assumed that the initial strain is exclusively due to the
longitudinal tension of the tows.

The composite and mandrel processing strain energy density is expressed in terms of
cylindrical stress and strains components, with the aid of eqn (42), as

(53)

where (e~o<)k and (e~~)k are the initial normal strains in layer k ( - M ::::; k ::::; N). These strains
are related to the strains parallel and perpendicular to the fibers at the time of winding
(t = to) by a rotation of the reference axes (Calius and Springer, 1989)

(e~?Jk = (e~loh cos~ <Pok + (e'1'h sin~ <POk

(e~~)k = (ello)k sin 2 <Pok + (e'.f')k cos~ <POk

(i<~)k = (Y~3)k = Ci,~o<)k = 0 (54)

where (e11oh and (e'1'h are the strains in the directions parallel and perpendicular to the
fibers. We note that at the time of winding the strains in the layer are exclusively attributed
to the applied tension (FO)k' The relationship between the strains and the applied tension
is derived in next section. The lower limits of the last three integrals are set to zero because
at the instant of winding, when the material is "soft", shear is neglected.

Equation (53) represents the strain energy density due to changes in the composite
strain. In developing this equation it was assumed that the fibers are "locked" in the resin.
In fact, as was discussed previously, the fibers may move relative to the resin. This motion
introduces the following additional strain energy density in the layer

(55)

where (e}xx)k and (e}OO)k are the axial and hoop components of the total fiber strain ef in layer
k at time t. (l1}xx)k and (l1}ooh are the axial and hoop components of the fiber stress. Only
normal strains and stresses are included in eqn (55) because shear in the fibers is negligible.
The upper limits of the integral are the true fiber strains. The lower limits are the strains
the fibers would have if they had not moved relative to the resin. These lower limits are
taken to be equal to the strain of the composite at time t. Expressions for the fiber's stress
and strain are given in the subsequent sections, along with those that apply to the composite.

In order to evaluate the above integrals we need relationships between the stresses and
the total strains, i.e. we need a set of constitutive equations for each material. These are
given next.

Stress-strain relations
There are three kinds of materials involved in the process: (i) the fibers, (ii) the

composite and (iii) the mandrel.
The fiber's stress-strain relations may be described by a linearly elastic, time­

independent law. The form of the relationships applicable to the fibers at any time during
the process is given by eqns (4.14) and (4.19). In the x-() coordinate system these are (Lubin,
1982)
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Fig. II. Stress and mechanical strain changes during a process step.

(a}xx)k = (O'Dk COS
2 cPk = (E1.M(er)k - (PLMn - no)] cos2 cPk

(a}OO)k = (O'Dk sin2 cPk = (ELM(ef)k-(P~.MT~-no)] sin2 cPk (56)

where the (E~ ')k is the longitudinal Young's modulus for the fibers in layer k, and (P~ l)k is
their coefficient of longitudinal thermal expansion. (E~ ')k and (P~ .)k are considered to be
constant throughout the processing cycles.

The mandrel is considered to be part of the laminate, hence it is convenient to describe
the mandrel's material in the same way as the composite. The differences in the mandrel
and the composite's properties are accounted for by choosing the proper set of coefficients
for the constitutive equations, as indicated subsequently.

During winding the stress and strain levels are low, and the winding tension (FO)k is
applied along the fiber direction. Consequently, the behavior of each band can be approxi­
mated by Hooke's law for a transversely isotropic material. Then the composite layer's
initial longitudinal and transverse strains are

(57)

where (Sllo)k and (Si')k are the composite stiffnesses at winding time. Expressions for these
stiffnesses are given in Appendix C. The average stress 0'0 is defined by

(58)

As before, bk and hk are the winding band width and thickness.
During processing the properties of the composite change, and, consequently so does

the stress-strain relationship. We calculate the changes in stresses and strain which occur
in each layer's stress and strain from time t-M to t. The stress change in the kth layer
during a time interval is taken to be composed of two increments, as illustrated in Fig. II

(59)

In the first increment (A-B) the strain is kept constant at its value at A, and the changes
in stress due to the known changes in material properties during the time interval Mare
calculated. In the second increment (B-C) the material properties are kept constant at their
value at time t, and the changes in stress corresponding to a change in strain L1i are found.
Thus the stress in the kth layer is

(60)
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where [Q]~ is the reduced stiffness matrix of layer k. Expressions for [Q]~ for anisotropic
and isotropic layers are given in Appendix C. By using the proper reduced stiffnesses for
each layer in the cylinder and the mandrel, both the composite and mandrel materials are
automatically included in the analysis.

The strain energy densities in the previous section were formulated in terms of total
strains. Equation (43) is used to transform the stress-induced strain 8~ in eqn (60) into total
strains. However, eqn (43) introduces additional thermochemical strains J;~. The strain­
temperatures relationship for the composite and the mandrel is approximated in a manner
similar to that used for the stress-strain relationship. This results in

(61)

where Tf is the temperature at which the layer was wound. fJk is the vector of thermal
expansion coefficients for layer k (Appendix C). In writing eqn (61) 13k was taken to be
independent of temperature. As before, eqn (61) is applicable to both the mandrel and the
composite, with the substitution of the proper values in Pk'

The time derivatives in eqns (60) and (61) may be approximated by

o [Q-]I _ [Q-]I-t.1
_[Q],-M = k k
ot k dt

o pI _ PI-M
_ PI-t.t _ k k

ot k - M (62)

Equations (56), (60) and (61) give the stresses in terms of the total strains. By sub­
stituting these equations into eqns (55) and (53), it becomes possible to evaluate the strain
energy density integrals of the previous section. The results of these integrations are the
strain energy densities as functions of total strain and temperature.

Deformation
An approximate solution to our model requires that the distribution of either the

strains or the displacements be assumed. Choosing the displacements has the advantage of
automatically satisfying compatibility within each layer. Here we postulate axial uL hoop
r~ and radial w~ displacements in each layer (composite or mandrel) as functions of the
coordinates x, e, Z and time t. The coordinates x and ewere defined previously (Fig. 9),
while z is the radial position relative to the midsurface of layer k, as shown in Fig. 10. Since
each layer is considered to act as a thin cylinder, the displacement's z-coordinate dependency
can be separated from the rest by using the following classic thin-section approximation
(Calladine, 1986)

u~ = iik(x.8.,) +ZUk(x.8.tl

L'~ = Vk(x.8.1) + ZVk(x.8.t)

w~ = ~~·k(x.8.1) + Z~i:-k(x.8.1) (63)

where Uk and Vk are the axial and hoop displacements on the layer's midsurface, and Wk is
the radial displacement of the layer's midsurface. Uk and 13k are the rotations of the axial
and hoop cross-sections about the layer's midsurface. ~'k is the change in the layer's
thickness. This formulation implies that cross-sections initially normal to the midsurface
remain plane, though not necessarily normal.

As was stated before, the cylinder-mandrel assembly is axisymmetrical, so none of the
displacement functions depends on the angular coordinate e. Additionally. the radial
displacement w is assumed to be independent of the axial coordinate x. This latter approxi­
mation is reasonable because generally the mandrel is sufficiently rigid to prevent any
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bending of the cylinder or the mandrel. With these approximations the simplest expressions
for the parameters in eqn (63) are

(64)

where uk, V~k and WOk> and d lk and Vllk are undetermined coefficients which only depend
on time. (~Wk)k is the change in layer thickness from the original thickness hk. In the absence
of the radial stress (1" (and the resulting mechanical strain ~,,), this thickness change is
entirely due to thermochemical density changes. Thus, by definition

where the thermochemical radial strain a~r)k is taken to behave as per eqn (61). TkOk is the
temperature of layer k at the time tOk at which it was added to the winding.

Equations (63) and (64) yield the following expressions for the displacement functions

(66)

Displacement constraints

Interlaminar compatibility. When there are no delaminations in the cylinder, com­
patibility requires that the displacements of any two contiguous layers k and k - I match
at the interface between these layers. However, we must remember that the layers are added
to the cylinder at different times, and thus layers k and k-l may experience different
amounts of total displacement. At any instant of time t this condition can be expressed for
the displacements proposed by eqn (66) as

I hk (!I ) [I hk - I (TI ) ] {I hk _ I (Tt) }
WOk - 2 rr k = WO(k-l) + -2- 6rr k-l - wo'ftc-1l + -2- 6rr k- I

-(M-I)~k~N k¥: l. (67)

The terms in the square brackets on the right-hand side of eqn (67) are, at time t, the
total axial, hoop and radial displacements of layer k-l at its interface with layer k. The
terms in the curly brackets represent what the displacements of layer k-l were at the time
t = tOk when layer k was added. The terms in the curly brackets are constants at any time
t> tOk '

By applying eqn (67) recursively, we obtain the following relationships between any
two non-contiguous layers designated by the subscriptsj and k



290 E. P. CAULS and G. S. SPRl~GER

(68)

Note that the axial coordinate x does not appear in eqn (68) because it cancels out in each
equation. As noted in the previous paragraph, the subscripts j and k refer to layers, both
of which must be either in the cylinder or the mandrel.

Boundary conditions. At the ends of the cylinder each layer is wrapped around the end
closures of the mandrel. This anchors the layers so that, over a time step !1t. every layer
experiences nearly the same axial displacement at the ends (x = ±Lj2). Thus at time t

where Zj and Zk are radial positions measured with respect to the midsurfaces of layers j and
k, respectively. Unless they are in contact, eqn (69) applies to the composite and the mandrel
separately. The above condition can be satisfied only if the z-dependent terms vanish for
every layer in the cylinder and the mandrel. Thus we write

(70)

which implies that the axial cross-section rotation u lk is independent of time t.
The composite cylinder is made up of a large number of helical layer pairs and hoop

layers. In our model these layers are represented by thin cylindrical shells, for which it is
reasonable to assume that radial lines remain radial. This condition can be expressed as

This expression may be manipulated to yield

(72)

Initial conditions. The initial (t = tOk) layer displacements are

(73)

The conditions given by eqn (73) can only be satisfied if all the coefficients on the right­
hand side of eqn (66) are zero. Thus we have

llot = 0 uti'/; = 0

rto"t = 0 t·tt% = O.

\I"~'t = 0 (74)

Let us consider the first time step, at which t -!1t = t Ok' For this time step the com­
bination of eqns (70), (72) and (74) yields
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(75)

It is clear from eqn (75) that axial and hoop cross-sections which were initially normal
to the midsurface of the layer will remain normal throughout the processing.

Inter/aminar relations. By combining eqns (68) and (75), we obtain the following
expressions for the displacement coefficients in any layer of the composite cylinder
(l < k ~ N)

k

U
1

- ul
" Ulo,Ok - 0'- L. 0(i-1)

;:; 2

(76)

where n symbolizes the product operator. For purposes of computation the mandrel is

divided into "layers". Obviously all these mandrel "layers" appear simultaneously at tOm,
so u~"(k-l) = V~(k-I) = W:m-l) = (bm)k = 0 for -M ~ k ~ O. Thus for the mandrel all the
terms within the curly brackets in eqn (68) vanish. Hence the mandrel's displacement
coefficients can be written as ( - M ~ k < 0)

(77)

Equations (76) and (77) allow us to express the displacements in all the layers in terms
of the displacements in one layer each for the composite and the mandrel.

The composite cylinder and the mandrel are in contact during winding, but they may
separate during curing or the subsequent cooling. As long as the composite and the mandrel
are in contact, eqn (67) is valid at the cylinder-mandrel interface (k = 1). By combining it
with eqn (75) we find that

U~l = u~o-uci>J

V~l = [v~oG~~~~;~~~D]-{v~oJ G~~~~;~~~D}

~~1 = [woo + ~o (1:')0+ ~l (1:,), ] - {w~oJ + ~o (!~~)o}. (78)
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Strain-displacement relations
Once the desired form of the proposed displacement functions has been arrived at,

they must be converted into strains before they can be used in the strain energy density
expressions. For an individual thin cylindrical layer k inside the cylinder or the mandrel,
we may use the following linearized strain-displacement relations, applicable to thin shells
(Reddy, 1985)

(79)

Equation (79) together with eqns (76) and (77) yield the strains in terms of the unknown
displacement coefficients

k

(G~x)k - (G:~~\')k = U~l - I U:P(i- J)

i= 2

I ~ { I. h i _ I T r ) }
- -;:; i~2 W(f(;- J) + 2 (Gr~i i- I

(YO,)k - (/O~)k = 0

(Y~x)k - (/~.nk = 0

-± [l'~O(i_ I) (1 + 2hi~ 1 )J}
1=2 ,,_ J

k ~O.

k?;l

(80a)

(80b)
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The fiber's total strain may differ from the layer strains defined above. The longitudinal
strain in the fibers, as used in this model, is obtained by linearizing eqn (35), which yields
(Calius and Springer, 1989)

(81)

where (WDk is provided by the Fiber Motion Submodel [eqn (41)]. On the other hand, in
terms of its hoop and axial components, the longitudinal fiber strain can be defined as
(Calius and Springer, 1989)

During processing the change in fiber angle is small, so that <POk ~ <Pk' With this
approximation, comparison of eqn (81) and eqn (82) yields

( I ( I) cu~er )k - er" k = -
x.\" xx ax

(83)

By comparing the above to eqns (63)-(79), it becomes possible to express the axial and
hoop components of the total fiber strain as

(84)

As stated previously, the shear in the fibers is assumed to be negligible.
Inspection of eqns (80) and (84) reveals that all of the cylinder's and the mandrel's

strain components are expressed in terms of the following six unknown displacement
coefficients, which depend only on time

(85)

When the cylinder and the mandrel are in contact there are only three unknowns

(86)

The symbol n represents the unknowns.

Governing equations
The variational problem posed by eqn (44) can now be evaluated in the following

steps.

(i) Substitution of the strain-displacement relations [eqns (79}-(84)] into the stress-strain
relations [eqns (56}-(61)] yields the stresses in terms of displacements.
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(ii) Substitution of the resulting expressions for the stresses in the strain energy density
definitions [eqns (53) and (55)] provides the strain energies in terms of displacements.

(iii) Substitution of the strain energy density terms in the variational equation [eqn (52)].
followed by

(iv) Variation of the resulting expression with respect to each of the unknowns in n [eqn
(85) or (86)], produces a set of algebraic equilibrium equations.

The governing equations produced by this procedure are rather long (Calius and
Springer, 1989). Solution of these equations yields the values for the n unknowns at any
instant of time. Once these values are known, the strains and the stresses can readily be
determined from the strain-displacement [eqn (80)] and stress-strain [eqns (56), (60) and
(61)] relations.

Solutions must be found through a numerical procedure. The numerical algorithms
which were used in this study are discussed subsequently.

6. VOID GROWTH SUBMODEL

The void submodel provides the size of a void at a given location in the composite as
a function of time. The analysis employed is the same as that proposed by Springer and
Loos for the growth of voids in laminated composites made of prepreg tape. Details of the
analysis are given in Springer (1983) and Loos and Springer (1983).

7. STRENGTH SUBMODEL

There is no generally accepted method available for calculating the strength of com­
posite cylinders, especially while the composite material is undergoing changes during
processing. To estimate failures in the cylinder we relied on failure criteria. These criteria
are based on quasi-empirical methods ofestimating the strength ofeach layer in the cylinder.
The following four methods were incorporated into the model: (i) the maximum stress
criterion, (ii) the maximum strain criterion, (iii) the Tsai-Wu quadratic criterion in stress
space, and (iv) the Tsai-Wu quadratic criterion in strain space. The equations relevant to
each of the criterion can be found in Calius and Springer (1989) and Tsai (1987).

8. METHODS OF SOLUTION

Solutions to the filament winding process model must be obtained by numerical
methods. In the following we briefly summarize the methods we applied to the solution of
the various submodels. It is emphasized that the different submodels are interconnected
and the solutions must be computed simultaneously.

Solutions to the energy equation [eqn (I)], which forms the basis of the model, were
generated by a standard combination of finite-element and finite-difference methods Zien­
kiewicz (1977). The finite-element formulation transforms the energy equation into a set of
first-order ordinary differential equations with variable coefficients in the time domain. This
set of differential equations was reduced to a set of linear algebraic equations by a finite­
difference formulation which marches through the process in a sequence of time steps. The
equation coefficients are taken to be constant during each time step. The time step size is
not constant but varies, under the algorithm's control, throughout the process.

The finite-difference equations were formulated using a two-point implicit finite-differ­
ence scheme. The procedure was developed in general form so that forward. backwards,
Crank-Nicolson or Galerkin methods could be used. All these options were incorporated
to allow the user to trade off time step size, which strongly influences computational speed,
for computational stability, according to the characteristics of the problem. In general, the
Crank-Nicolson scheme was found to be satisfactory.

Although the coefficients of the resulting set of algebraic equations make up a
tridiagonal matrix, the conventional tridiagonal solver algorithms were not used because
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of numerical instabilities. Instead, solutions were obtained by Gaussian elimination with
partial pivoting, as implemented for banded matrices by the DGBCO and DGBSL subrou­
tines of the UNPACK library (Dongarra et al., 1979).

The equation pertaining to the stress-strain submodel constitute a set oflinear algebraic
equations. Solutions to these equations at the end of each Thermochemical Submodel time
step were obtained by Gaussian elimination with partial pivoting method. as implemented
by the DGECO and DGESL subroutines of the UNPACK library (Dongarra et al., 1979).

Solutions to the partial differential equation describing vapor diffusion to and from
the voids were obtained by an explicit finite-difference scheme (Carnahan et al., 1969).

The Fiber Motion and Failure Submodels are represented by simple algebraic equations
which can be evaluated in a straightforward manner at the end of each time step.

An algorithm was developed which incorporated the aforementioned submodel solu­
tion methods. This algorithm was implemented in a computer code named WIND. (This
code may be obtained from the authors.) The input parameters required by the code and
the output provided by the code are discussed in Lee and Springer (1989).

9. CONCLUDING REMARK

The model described in this paper relates the thermal, chemical and mechanical
behavior of filament wound thin cylinders to the three process variables: winding speed,
fiber tension, and ambient temperature. Verification of the model and illustration of the
use of the model in the selection of the proper process variables are given in two companion
papers (Calius et al., 1989; Lee and Springer, 1989).
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APPENDIX A: VARIATION OF PROPERTIES WITH DEGREE OF CURE

The density p, the heat conductivity k and the heat capacity per unit volume C' of the resin are related to
the degree of cure :x by the following simple linear relationships

k, = :xk; --- (1- :x)k~C

The following piecewise linear relations were used to represent the mechanical properties of the composite

y = y"' :x ~:xo

Y=liyc+(I_i)YuC :Xo<:x<:x,

Y= Y'

(AI)

(A2)

(A3)

(M)

where Y represents the composite Young's moduli E, shear moduli G, or Poisson's ratios v. The ratio Ii is defined
as

_ :x-:xox=-­
X,-IXO

(AS)

where :xo and IX, are the values IX at which the "hardening" of the resin starts and ends. The superscripts u and uc
refer to the properties of the cured (IX = I) and uncured (:x = 0) resin. The above properties vary with time since
the degree ofcure varies with time.

APPENDIX B: FIBER MOTION SUBMODEL

Solutions to eqn (36) can be expedited by observing that some of the terms are negligible when considering
the change in fiber position Wr over a small time interval t1t. Substraction of the equilibrium equation at t-t1t
from that at t results in an incremental form of the equilibrium equation

where the superscripts t and t-t1t denote values evaluated at those particular times. We define the fiber dis­
placement increment as

d(t1wf) .
~=wf.

Equation (BI) may then be rearranged to yield

(B2)

(B3)

(B4)

where the parameters 90 through 93 are given by eqn (40).
Upon examination of eqn (37) it is apparent that the orders of magnitude of the parameters 10 through IJ

are

(B5)

where A. is a very small number compared to unity.
The total fiber displacement at the start of the increment wf-&' is small compared to Rp, hence

(
wf-&') .o RP == 0(/.).



Filament-wound thin cylinders

Funhennore, for "slow" fiber motion it is assumed that

Then the orders of magnitude of the parameters 90 through 93 are

Thus eqn (84) becomes

297

(B6)

(B7)

where the increments dWr and dWr during a small time interval d/ are considered to be of the same order of
magnitude as wi-A' and Wf- A,. Hence O(dwr!R?):: O()') and O(dwr!C):: O(),). The second and third tenns in
eqn (B7) are clearly of higher order than the rest and can be neglected, and eqn (84) reduces to eqn (39) in the
text.

APPENDIX C: STIFFNESS AND THERMAL EXPANSION COEFFICIENTS

The reduced stiffness matrix [OJ for a cylindrical layer is defined in the (x, 0, r) coordinate system. The stiffness
matrix [QJ of the material in this layer is defined in the material's on-axis coordinates (1,2,3). The [OJ and [QJ
stiffness matrices are related by

(CI)

where [J] is the layer's transfonnation matrix (Tsai, 1987; Jones, 1975). We assume that the matt:rial is transversely
isotropic. Then, the nonzero elements of the stiffness matrix [QJ are

where

E22Q22 = :---=-='-­
I-V'2V11

VI2 E.,
Q'2 = Q21 = _e:-.:..:.­

I-V,2V21

Q _ Q _ (V23+ V '2 V21)E22

23 - J2 - (I +v23)(I-v23-2V'2V21) _

Q66 = E•• (C!)

(C3)

Eli and Vii (i "" j) are the moduli and Poisson's ratios. The subscripts i and j refer to the longitudinal (i,j = I).
transverse (i,j = 2,3) and shear (i,j = 6) components when using contracted notation.

By manipulating Hooke's law in the material's on- and off-axis coordinates, it can be shown (Calius and
Springer, 1989) that the composite stiffness coefficients at /0 are

In the cylindrical coordinate system the nonzero components of the thennal expansion coefficients II are

P.. = PII cos2 tP+P22 sin2 tP
Poo = PII sin2 tP+P22 cos2 tP
Px6 = 2(p II - P22) sin tP cos tP

(C4)

(C5)

where Pil are the on-axis coefficients of the thennal expansion coefficients.
Note that the engineering constants (E and v) and the on-axis thennal expansion coefficients (p) vary with

the degree ofcure (Appendix A). These propenies change with time because ofchanges in the degree ofcure .".ith
time.


